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Abstract

The purpose of this thesis is to investigate n-absorbing ideals of a com-

mutative semiring S , a generalization of the concept of n-absorbing ide-

als over commutative rings. An ideal I of a commutative semiring S is

called n-absorbing ideal of S if and only if whenever x1, · · · ,xn+1 ∈ S and

x1...xn+1 ∈ I , then a product of n of these elements is in I .
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1 Introduction

Semirings are an algebraic structure that are thought of as generalization to rings.

Semirings have found their way to some real life applications, mostly in com-

puter science, though not restricted to that.

Throughout this thesis we assume all semirings are commutative semirings

with unity 1 , 0. the first formal definition of a semiring is found [1]. This

structure became later known as a semiring.

In 1958, Henriksen [2] introduced k-ideals (subtractive ideals) in her PhD

thesis. This type of ideals comes to our aid since we do not have the luxury of

the cancellation law for addition as we will see in this paper.

Badawi first introduced the concept of 2-absorbing ideals in 2007 [3]. Since

then it has been investigated in more details and in further algebraic structures.

In 2012, Darani [4] took the concept of 2-absorbing ideals and worked on it

on commutative semirings. In 2012 Ghaudari [5] studied the 2-absorbing ideals

in commutative semirings and introduced some of its properties in the quotient

semiring and polynomial semiring.

In 2011 Badawi and Anderson published a paper on n-absorbing ideals in

commutative rings, which are a generalization to the concept of 2-absorbing ide-

als, and studied it in details. The idea of n-absorbing ideals itself can be thought

of as a generalization of prime ideals. Prime ideals become 1-absorbing ideals by

definition as we will see.

L. Sawalmeh studied 2-absorbing ideals over commutative semirings in her

thesis under the supervision of Mohammed Saleh (Who is also my supervisor)

which was published [6]. Also, I. Murra studied Weakly 1-Absorbing Primary
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Ideals over Commutative Semirings in [7].

In this thesis we will study n-absorbing ideals over commutative semirings.

In chapter 2, we give the definitions and results that will be needed this thesis.

In chapter 3, we study n-absorbing ideals over commutative semirings which is

a generalization to results studied in [8].

To clarify, all results obtained in this thesis are generalizations of results in

[8].
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List of symbols

N The semiring of natural numbers

Z The ring of integers

S Commutative semiring with unit (wherever un-

specified)

(n) the principal ideal generated by n

(m,n) The ideal generated by n and m

S[X] the polynomial semiring over a semiring

V (S) the set of members of S having an additive in-

verse

U (S) the set of members of s having a multiplicative

inverse

Rad(I) the radical of an ideal I

Nil(I) the nil radical of an ideal I

Z(S) the set of all zero divisors of a semiring S
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2 Preliminaries

Definition 2.1 (Semigroup) A semigroup is an ordered pair (M,∗) where M is a

set and ∗ is an associative binary operator on M.

Definition 2.2 (Monoid [1]) A Monoid is a semigroup (M,∗) with an identity

element e ∈M such that e ∗m =m ∗ e =m ∀m ∈M .

Example 2.3 The set of positive integers Z+ with usual addition is an example

of a semigroup but not a monoid. The set of non-negative integers N with usual

addition is a monoid.

Definition 2.4 (Commutative monoid) A commutativemonoid (Also called an

abelian monoid) is a monoid M in which ab = ba for all a,b ∈M .

Remark 2.5 Given a semigroupM that is not a monoid we can embed an element

e into M and define its multiplication by e ∗ x = x ∗ e = x for all x ∈ M to get a

monoid.

Definition 2.6 (semiring [1]) A semiring is an ordered tuple (S,+, .) where the

following holds :

1. (S,+) is a commutative monoid with additive identity 0.

2. (S, .) is a monoid with multiplicative identity element 1.

3. x.(y + z) = x.y + x.z and (y + z).x = y.x+ z.x ∀x,y,z ∈ S .

4. 0.x = x.0 = 0 ∀x ∈ S .
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5. 1 , 0.

All of the above definitions are defined as in [1].

The concept of semirings generalizes the concept of rings which is widely

studied in the literature. So naturally, any ring is a semiring.

Example 2.7 N with the usual addition is a semiring but not a ring.

Example 2.8 Another example of a semiring is the tropical semiring (R∪{∞},⊕,⊙),

where x⊕ y =min{x,y} and

x⊙y = x+y is the usual addition onR, and∞⊙y = y⊙∞ =∞,∞⊕y = y⊕∞ =

y,∀y ∈R∪ {∞}.

Example 2.9 The product of two semirings is also a semiring. If (S,+S , ·S) and

(T ,+T , ·T ) is a semiring we can define (S × T ,+, ·) where (a,b) + (c,d) = (a +S

c,b+T d) and (a,b) · (c,d) = (a ·S c,b ·T d)

Similarly, one can define the product of n semirings inductively by defining

S1 × · · · × Sn = (S1 × · · · × Sn−1)× Sn

Definition 2.10 (Subsemiring) Let (S,+, ·) be a semiring. A subset U of S is

said to be a subsemiring of S if (U,+, ·) is a semiring.

Proposition 2.11 Let U be a subset of S . Then U is a subsemiring of S if and

only if the following hold :

1. 0,1 ∈U .

2. a+ b ∈U for all a,b ∈U .

3. a.b ∈U for all a,b ∈U .
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Example 2.12 Let S be a semiring. Then P (S) = {s+1|s ∈ S}∪{0} is a subsemiring

of Ss. First, P (S) is a subset of S . The identities 0 ∈ P (S) and 1 = 1+0 ∈ P (S). P (S)

is closed under addition. Let a,b ∈ P (S). If a = b = 0, then a+b = 0 ∈ P (S). If a = 0

and b , 0, then there exists s1 ∈ S such that b = s1+1 and thus a+b = s1+1 ∈ P (S).

Now if a,b , 0, then there exist s1 and s2 such that a = s1 + 1 and b = s2 + 1 and

thus a+b = (s1+ s2+1)+1 ∈ P (S). Similarly, P (S) is closed under multiplication.

Let a,b ∈ P (S). if a = 0 or b = 0 then multiplication is already defined to be 0. other

wise, a = s1+1 and b = s2+1. So we have ab = (s1+1)(s2+1) = (s1s2+s1+s2)+1 ∈

P (S).

Definition 2.13 (ideal) A left ideal of a semiring S is a subset I such that the

following hold :

1. if a,b ∈ I then a+ b ∈ I .

2. if s ∈ S,x ∈ I then sx ∈ I .

Definition 2.14 If S is a semiring and I1 and I2 are ideal of the semiring then we

define addition and multiplication of the ideals as follows :

1. I1 + I2 = {r + s|r ∈ I1, s ∈ I2}.

2. I1I2 = {r1s1 + · · ·rnsn|ri ∈ I1, si ∈ I2,n ∈N}.

Proposition 2.15 Suppose I1, I2 and I3 are ideals of a semiring S . Then the fol-

lowing holds.[9]

1. The sets I1 + I2 and I1I2 are ideals of a semiring S .

2. I1 + (I2 + I3) = (I1 + I2) + I3 and I1(I2I3) = (I1I2)I3.
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3. I1 + I2 = I2 + I1 and I1I2 = I2I1.

4. I1(I2 + I3) = I1I2 + I1I3.

5. I1 + I1 = I1, I1 + (0) = I1, I1S = I1, I1(0) = (0) and I1 + S = S .

6. if I1 + I2 = (0) then I1 = I2 = (0).

7. I1I2 ⊆ I1 ∩ I2 and if I1 + I2 = S , then I1I2 = I1 ∩ I2.

8. (I1 + I2)(I1 ∩ I2) ⊆ I1I2.

Example 2.16 let n be a fixed positive number. nN = {ns|s ∈ N} is an ideal of

the semiring N.

The above example is a special type of ideals called the principal ideal which

is defined as follows:

Definition 2.17 (Principal ideal) Let S be a semiring, x ∈ S . Then, xS = {xs|s ∈

S} is called a principal ideal and will be denoted by (x).

An ideal I of a semiring S is called a proper ideal if I , S .

Definition 2.18 (zero divisor) An element z of a commutative semiring S is said

to be a zero divisor if there is an element s ∈ S such that sa = 0.

Example 2.19 In the semiringN×N. (1,0).(0,1) = 0, so both are zero divisors.

Definition 2.20 (divisors) Let S be a semiring and let a,b ∈ S . Then we say an

element a is a divisor of b if as = b for some element s ∈ S . In that case, we also say

a divides b, denoted by a|b.
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Definition 2.21 (prime element) An element p of a semiring S is said to be

prime if whenever p|ab for some elements a,b ∈ S then p|a or p|b.

Definition 2.22 (Prime ideal) A prime ideal of a semiring S is an ideal I such

that whenever H and K are ideals of S and HK ⊆ I then H ⊆ I or K ⊆ I .

Remark 2.23 In a commutative semiring an ideal is prime iff xy ∈ I implies that

x ∈ I or y ∈ I .

Example 2.24 3N is a prime ideal in the semiring N.

Definition 2.25 (Spectrum of a semiring [1]) Let S be a semiring. The set of

all prime ideals in S is called the spectrum of S . and is denoted by Spec(S). So

Spec(S) = {P ⊂ S |P is a prime ideal of S }.

We provide an example of an ideal of a semiring that is not a subtractive ideal.

But first we define idempotent elements.

Definition 2.26 ([1]) An element s of a semiring S is said to be additively idem-

potent if s+ s = s.

Definition 2.27 ([1]) An element s of a semiring S is said to be a multiplicative

idempotent if s.s = s.

Example 2.28 Consider the semiring S = {0,1,u} where u is a multiplicative

idempotent and u + 1 = u = 1 + u. Let I = {0,u}, then I is an ideal but not a

subtractive ideal since 1+u = u ∈ I but 1 < I .

We will also define the multiplicative idempotent ideal as follows:
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Definition 2.29 ([1]) An ideal I is said to be a multiplicative idempotent if I2 = I .

Simply, called an idempotent ideal.

Example 2.30 Take the ideal Z30. And take the ideal I = 6Z30. Then I is an

idempotent ideal.

Example 2.31 Any principal ideal pN of N where p is a prime is a subtractive

ideal.

Definition 2.32 (Radical) The radical of an ideal I of a semiring S is defined as

Rad(I) = {x ∈ S | xn ∈ I for some positive integer n}.

Example 2.33 The radical of the ideal 4N is the ideal 2N.

Definition 2.34 (Maximal ideal) Suppose S is a semiring. We say that an ideal

M is a maximal ideal of S ifM ⊆ I ⊆ S for some ideal I of S implies eitherM = I

or I = S .

Example 2.35 Let S = Z8 then 2Z8 is a maximal ideal, but 4Z8 isn’t.

Definition 2.36 ( [10]) Let S be a set. An ordering (also called partial ordering)

of S is a relation defined on S (written ≤) such that:

1. s ≤ s for all s ∈ S .

2. If s1 ≤ s2 and s2 ≤ s! we have s1 = s2.

3. If s1 ≤ s2 and s2 ≤ s3 we have s1 ≤ s3.

Definition 2.37 A set S with and ordering on ≤ on S is called an ordered set.
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Definition 2.38 (Totally ordered set [10]) A partially ordered set S is called a

totally ordered set if for any s1, s2 ∈ S we either have s1 ≤ s2 or s2 ≤ s1.

Definition 2.39 Let S be an ordered set, and T a subset of S . An upper bound of

T (in S) is an element b ∈ S such that x ≤ b for all x ∈ T . An upper bound u of T

is called a least upper bound of T if for any other upper bound b of T then b ≤ u.

Definition 2.40 A maximal elementm ∈ S is an element so that for any x ∈ S : if

x ≤ s then x = s.

Definition 2.41 A nonempty ordered set S is inductively ordered if every non-

empty totally ordered subset has an upper bound.

Lemma 2.42 (Zorn’s lemma [10]) Let S be a non-empty inductively ordered set.

Then there exists a maximal element in S .

Zorn’s lemma is used to show that a chain of ideals has a maximal ideal. But,

more importantly, we show the following lemma :

next we will provide some results about prime and maximal ideals over com-

mutative semirings.

Remark 2.43 Any maximal ideal of a commutative semiring is a prime ideal.

However, the converse is not true.

Example 2.44 Consider the semiring S =N. Then (0) is a prime ideal since S has

no zero divisors. This is an example of a prime ideal that is not maximal.

Proposition 2.45 [1] If S is a semiring and I is an ideal of S then the following

are equivalent :



11

1. I is a prime ideal of S .

2. For any a,b ∈ S and ab ∈ I then a ∈ I or b ∈ I .

3. For any a,b ∈ S such that (a)(b) ⊆ I then either a ∈ I or b ∈ I .

Example 2.46 Consider the semiring (N,+, .). The ideal I = N\{1} is a prime

ideal but the set I[x] of all polynomials with coefficients in I where x is an indeter-

minate is not prime ideal ofN[x] since (3+x)(1+2x) = 3+7x+2x2 ∈ I[x] while

neither 3+ x nor 1+2x belong to I[x].

Theorem 2.47 (Prime Avoidance Theorem for Semirings [11]) Let S be a

semiring, I an ideal, and Pi(1 ≤ i ≤ n) be subtractive prime ideals of S . If I ⊆⋃n
i=1 Pi then I ⊆ Pi for some i.

Corollary 2.48 Let Pi , · · · , Pn be incomparable prime ideals of a semiring S . then

for each Pi , Pi\
⋃n

i=1 Pi is non-empty.

Definition 2.49 A nonempty subsetW of a semiring S is said to be a multiplica-

tively closed set (for short an MC-set) if 1 ∈ W and for all w1,w2 ∈ W , we have

w1w2 ∈W .

Lemma 2.50 ([1]) The maximal elements of the set of all ideals disjoint from an

MC-set of a semiring are prime ideals.

Proof. Suppose S is a semiring and let M ⊆ S be an MC-set. Let Σ be the

set of all ideals of S disjoint from M . If {Iα} is a chain of ideals in Σ, then ∪Iα
is also an ideal disjoint from M and also an upper bound for {Iα}. Therefore

by Zorn’s Lemma, Σ has a maximal element. Say P is a maximal element of σ .



12

We show that P is a prime ideal of S . Take two elements a, b that are not in P .

Then we can see that P ⊂ P + (a) and P ⊂ P + (b). This implies that P + (a) and

P + (b) are ideals of S that are not disjoint from M . So there exist m1,m2 ∈M

such that m1 = p1 + xa and m2 = p2 + yb for some p1,p2 ∈ P and x,y ∈ S .

But m1m2 = p1p2 + p1yb + p2xa+ xyab. Now it is obvious that if ab ∈ P , then

m1m2 ∈ P , which contradicts the fact that P is disjoint fromM . so we conclude

that ab < P and P is indeed a prime ideal of S .

Lemma 2.51 ([1]) Any semiring S has at least one maximal ideal.

Lemma 2.52 ([1]) Any maximal ideal of a semiring S is a prime ideal.

Definition 2.53 (Primary ideal [1]) An ideal I of a commutative semiring S is

said to be primary iff whenever xy ∈ S then either x ∈ I or yn ∈ I for some positive

number n.

Remark 2.54 Any prime ideal is primary.

Example 2.55 A primary ideal is not necessarily prime. For example, let S =N,

and I = (9). Then I is a primary ideal but not a prime ideal.

Remark 2.56 let I be a primary ideal over a semiring S . Then Rad(I) is a prime

ideal.

Proof. Suppose I is a primary ideal of a semiring S . Let Rad(I) be the radical

of I . Let xy ∈ Rad(I) and x < Rad(I). Since (xy)n = xnyn ∈ I for some positive

integer n. And since xn < I (other wise x ∈ Rad(I)), then there exists a positive

integer m such that (yn)m = ymn ∈ I . So y ∈ Rad(I).



13

Definition 2.57 (P -primary ideal) An ideal I of a commutative semiring S is

said to be P -primary if Rad(I) = P Where P is a prime ideal of S .

Definition 2.58 (divided prime ideal) A prime ideal P of a semiring S is said

to be a divided prime ideal if P ⊂ xS for some x ∈ S .

Definition 2.59 (Semiring homomorphism) Let S and T be semirings. Then

a semiring homomorphism is a function f : S→ T such that for all a,b ∈ S

1. f (a+ b) = f (a) + f (b).

2. f (ab) = f (a)f (b).

3. f (0) = 0.

4. f (1) = 1.

Example 2.60 ([1]) Given any semiring S there is a canonical semiring homo-

morphism defined as α : n→ n1S .

Definition 2.61 ( ascending chain condition) A poset is said to satisfy the as-

cending chain condition if for every weakly increasing sequence i1 ≤ i2 ≤ · · · there

exists a number n such that in = in+1 = · · · .

Definition 2.62 (noetherian semiring) a semiring S is said to be noetherian iff

every chain of ascending ideals satisfies the ascending chain condition.

Definition 2.63 (semidomain) A semiring S is called a semidomain if S has no

zero divisors.
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3 Results

Definition 3.1 (n-absorbing ideal) An n-absorbing Ideal I of a semiring S is a

proper ideal I such that if x1, · · · ,xn+1 ∈ S and x1 · · ·xn+1 ∈ I then the product of n

of these elements is in I .

We can see here that a prime ideal is just a 1-absorbing ideal by definition.

So the concept of an n-absorbing ideal could be seen as a generalization to the

concept of prime ideals.

Example 3.2 Consider the semiring of non-negative integers N with the usual

addition and multiplication. Then (2) is n-absorbing for all positive integers n. Let

x1 · · ·xn+1 ∈ (2) then the product is even and so one of the elements is must be even,

say x1, then any n product involving x1 is going to be in (2).

The above example should suggest that a prime ideal is n-absorbing for all

positive integers n. this is shown in Theorem 3.5(b).

For an Ideal I of a semiring S wemight want to address the natural number n

such that I is n-absorbing but notm-absorbing for allm ≤ n (i.e the least number

such that I is n-absorbing). Badawi defines ω(I) for that exact purpose.

Definition 3.3 Let S be a semiring and let I be a proper ideal of S . Then ωS(I) =

min{n : I is an n-absorbing Ideal of S }.

Badawi provides an example of an ideal of a ring that is not n-absorbing for

any positive number n.

Working in a semiring can be difficult without additive inverses. However

one can make use of k-ideals (Also known as subtractive ideals).
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Definition 3.4 (k-Ideals) An Ideal I of a semiring S is called subtractive (k-ideal)

if a+ b ∈ I and a ∈ I imply b ∈ I .

In this chapter we generalize the concept of n− absorbing ideals from com-

mutative rings to commutative semirings.

Theorem 3.5 Let S be semiring. The following holds:

(a) I is an n-absorbing ideal of S iff for any integer m > n, x1 · · ·xm ∈ I implies

that there are n of these xi whose product is also in I .

(b) If I is n-absorbing ideal then I is m-absorbing ideal for all m > n.

(c) If Ij is nj - absorbing ideal for 1 ≤ j ≤ i then I = I1∩ · · · ∩ Ii is an n-absorbing

ideal for n = n1 + · · ·+nj .

(d) If p1, · · · ,pn are prime elements of a semidomain S then p1 · · ·pnI is n-absorbing

ideal.

(e) If I is an n-absorbing ideal of S then Rad(I) is n-absorbing ideal .

Proof.

(a) Suppose that for any integer m > n, x1 · · ·xm ∈ I implies that there are n of

these xi whose product is also in I . Then Taking m = n + 1, We get that

I is an n-absorbing ideal by definition.To show the converse is also true,

We show any n-absorbing is (n + 1)-absorbing. Let x1 · · ·xn+2 ∈ I this is

iff (x1 · · ·xn)(xn+1xn+2). Now the product of n of these will be in S , either

(xn+1xn+2) is among these elements or not. If it is not we are done, if it is,

then since S is commutative we have (
n∏
i,r

xi)(xn+1xn+2) ∈ I . These are n+ 1
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terms, since I is n-absorbing n of them have their product in I. as desired. By

an induction argument we can show that it is m-absorbing for all m > n.

(b) This follows from (a).

(c) We first prove this for the intersection of two Ideals. Let I1 and I2 be n-

absorbing andm-absorbing ideals. and let x1 · · ·xn+m+1 ∈ I1∩I2. This implies

that n of these elements have their product in I1. LetN be the set containing

exactly these elements. Let M be the set containing the m elements whose

product are in I2. Now define U = M ∪N . Note that U will have at most

m+n. Next note that
∏
x∈U

x ∈ I1∩I2. If this product hasm+n unique elements

we are done. Else we can multiply by any elements not in U until the length

of the product is n+m. To show this works for the intersection of n ideals, let

the statement hold up to the intersection of k ideals. Let I1, · · · , Ik+1 be ideals

where Ij is nj − absorbing . Let I = I1 ∩ · · · ∩ Ik+1. But I = (I1 ∩ · · · Ik)∩ Ik+1
and (I1 ∩ · · · ∩ Ik) is n1 + · · ·+nk-absorbing. and so I must be n1 + · · ·+nk+1

absorbing.

(d) Let x1, · · · ,xn+1 be elements of S such that x1 · · ·xn+1 ∈ p1 · · ·pnI . Then

p1 . . .pns = x1 · · ·xn+1 for some s ∈ I . Note that for each 1 ≤ i ≤ n we have

pi(
∏
j,i

pj)s = x1 · · ·xn+1. This would imply that for each 1 ≤ i ≤ n we have

pi |xk for some 1 ≤ k ≤ n + 1. That there must exist a product of at most n

elements of x1, · · · ,xn+1 ∈ I .

(e) Let I is n-absorbing. Note that if x ∈ Rad(I) then xn ∈ I . Let x1 · · ·xn+1 ∈

Rad(I). Then we have xn1 · · ·x
n
n+1 = (x1 · · ·xn+1)n ∈ I .and thus we have since

I is an n-absorbing ideal we might assume xn1 · · ·xnn ∈ I , in other words we

have x1 · · ·xn ∈ Rad(I).
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Example 3.6 The converse of (b) is not true. In the semiring (N,+, ), let I =<

4,5 >. Then I = {0,4,5,8,9,10,12,13,14, · · · } =N\{1,2,3,6,7,11} is a 2-absorbing

ideal but not a prime ideal. We show I is two absorbing by contradiction. Let abc ∈ I

for some a,b,c ∈ N and a,b,c , 1 (If one of them is 1 then the product of two is

in I). If no product of two elements is in I then ab, bc and ac ∈ {1,2,3,6,7,11} So

ab = bc = ac = 6 which leads to c2 = 6 a contradiction.

Some of the results from the previous theorem can be rephrased with the

ω function. For instance (c) becomes : ω(I1 ∩ · · · ∩ In) ≤ ω(I1) + · · · +ω(In), In

particular, if P1 · · ·Pn are prime ideals then ω(P1 ∩ · · · ∩ Pn) ≤ n. (e) becomes: if

ω(I) ≤ n then ω(Rad(I)) ≤ n.

now we want to give an example when the equality in (c) is strict, that is,

ω(I1 ∩ · · · ∩ In) = ω(I1) + · · · + ω(In). That is we want ω(P 1 ∩ P 2) = 2. So

consider Z6. We have exactly two prime ideals in Z6 and these are P1 = {0,3}

and P2 = {0,2,4}. Note that P1∩ P2 = {0} which is not prime since 2 ∗ 3 = 0. But

the zero ideal will be 2-absorbing since 2 and 3 are zero divisors.

More generally, equality in part (c) is met when P1, · · · , Pn are incomparable

prime ideals.

Remark 3.7 Let P1, · · · , Pn be incomparable prime ideals then ω(P1 ∩ · · · ∩ Pn) =

ω(P1) + · · ·+ω(Pn).

To show that, take xi ∈ Pi\
⋃

j,i Pj i.e we want to take an element from each

prime ideal that only belongs to that prime ideal (Such choice is possible by corol-

lary 3.7) . then x1 · · ·xn ∈ P1 ∩ · · · ∩ Pn but no proper sub product of x1, · · · ,xn is

in P1 ∩ · · · ∩ Pn (otherwise, this would imply xi ∈ Pj and i , j which contradicts
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the choice of xi ’s). this would imply that ω(P1 ∩ · · · ∩ Pn) ≥ n and so there is a

strict equality.

Definition 3.8 (minimal prime ideal over I) Let S be a semiring and let I be

an ideal of S . We say that a prime ideal P is minimal over I if P is minimal among

all prime ideals containing I.

For the next theorem, if S is a semiring we let MinS(I) Denote the set of

prime ideals minimal over S .

Theorem 3.9 If I is an n-absorbing ideal of a semiring S . Then there are at most

n k-prime ideals minimal over S . Moreover |MinR(I)| ≤ ω(I).

Proof. If n = 1 then the result trivially holds since I itself is a prime. So we

may assume n ≥ 2. Let P1, · · · , Pn+1 be distinct minimal prime k-ideals over I .

Then for each 1 ≤ i ≤ n we can choose xi ∈ Pi\((
⋃
k,i

Pk)∪ Pn+1). we can choose

for each Pi a ci ∈ S − Pi such that cix
ni
i ∈ I for some ni ≥ 1. Since I ⊆ Pn+1

is an n-absorbing k-ideal we get that cixn−1i ∈ I (otherwise we get xni ∈ I ⊆

Pn+1 =⇒ xi ∈ Pn+1) for all l ≤ i ≤ n. and so (c1 + · · ·ci)xn−11 · · ·xnn−1 ∈ I . Since

xi ∈ Pi − (
⋃
k,i

Pk) and cix
n−1
i ∈ I ⊆ P1 ∩ · · · ∩ Pn. We have that ci ∈ (

⋂
k,i

Pi) − Pi (

To see this note that if ci < (
⋂
k,i

Pk)− Pi that would imply xi ∈ Pk , i , k which is a

contradiction to the choice of xi). Now since Each Pi is assumed to be a k-ideal

we can conclude that c1 + · · · + cn < Pi ,1 ≤ i ≤ n. Otherwise, since
∑
k,i

ck ∈ Pi

this would imply ci ∈ Pi .Hence we have (c1 + · · · + cn)
∏
k,i

xk < Pi for 1 ≤ i ≤ n

and so (c1 + · · · + cn)
∏
k,i

xk < I . The preceding argument shows that x1 · · ·xn ∈

Pn+1(Since I is n-absorbing). But is should imply that xi ∈ Pn+1 for some i and

thus a contradiction. The moreover statement is self evident.
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Example 3.10 As in [8] We want to give examples of an ideal I of a semiring that

is not a ring with the following property, I is n-absorbing but not n− 1-absorbing,

and for m ≤ n we want exactly m minimal ideals over I . First the ideal 8N is 3-

absorbing but not 2-absorbing since 2.2.2 ∈ 8N but 4 < N. 8N has exactly one

minimal prime ideal over it, that is 2N. Another example is 12N which is also 3-

absorbing but not 2-absorbing and has exactly 2 minimal prime ideals over it, that

is 2N and 3N. finally we have 42N which is also 3-absorbing but not 2-absorbing

and has 2N, 3N and 7N minimal over it.

Remark 3.11 The following property of comaximal ideals holds in semirings just

like in rings: If {Ik}nk=1 is a set of comaximal prime ideals then
n⋂
i=1

Ik =
n∏
i=1

Ik . [9]

Proof. First We show if I1, I2 are comaximal then I1 ∩ I2 = I1I2. This is

straightforward since I1 ∩ I2 = (I1 ∩ I2)(I1 + IJ ) ⊆ I1I2 ⊆ I1 ∩ I2. Let {Ik}nk=1
be a set of comaximal Ideals. Define J to be the intersection of the first n − 1

ideals. that is, define J =
n−1⋂
i=1

Ik . We will show that J and In are comaximal. We

show that by contradiction. Suppose J, In are not comaximal.Then J + In is a

proper ideal of S and a result contained in a maximal ideal m of S . this means

that J is contained in m which implies that Ik ⊆ m for some 1 ≤ k ≤ (n − 1).

We now get that Ik + In ⊆ m, this contradicts the assumption that {Ik}nk=1 is a

set of comaximal ideals. So J and In are comaximal and J ∩ In = J ∩ In. Using

mathematical induction,
n⋂

k=1
Ik =

n∏
k=1

Ik is proved.

Theorem 3.12 If P1, · · · , Pn are comaximal prime ideals over a semiring S then

I = P1 . . . Pn is n-absorbing. Moreover, ω(I) = n.

Proof. Note that I = P1 · · ·Pn = P1 ∩ · · · ∩ Pn by the above remark. and By
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Theorem 1.9 we have that I is n-absorbing. The moreover statement follows

from remark theorem 3.7 since they are incomparable.

In general the product of n prime ideals is not n-absorbing. Badawi provides

some examples which we mention some of here:

Example 3.13 let R = Z[X,Y ,Z]. Let P1 = (2,X), P2 = (2,Y ) and P3(2,Z).

These are incomparable prime ideals (but non maximal). The product I = P1P2P3 =

(2,4X,4Y ,4Z,2XY ,2XZ,2YZ,XYZ) is not 3-absorbing. To show that take x1 =

2, x2 = X+Y +2, x3 = X+Z+2 and x4 = Y +Z+2. then x1x2x3x4 = 16+16X+

4X2 + 16Y + 12XY + 2X2Y + 4Y 2 + 2XY 2 + 16Z + 12XZ + 2X2Z + 12YZ +

4XYZ + 2Y 2Z + 4Z2 + 2XZ2 + 2YZ2. This is clearly in I since 2 ∈ I and the

above can me written as 2x where x ∈Z[X,Y ,Z]. We claim that no other product

of 3 elements is in Z.

To show this let’s examine the possible 3 products which are x1x2x4, x1x2x3,

x1x3x4 and x3x2x4. We list the polynomials here without a specific order and show

that each of them is not in I .

1. 8+8X +2X2 +4Y +2XY +4Z +2XZ +2YZ :

suppose that 8+8X +2X2 +4Y +2XY +4Z +2XZ +2YZ ∈ I . this would

imply that 2X2 ∈ I which is not the case.

2. 2XY +2XZ +4X +2Y 2 +2YZ +8Y +4Z +8:

if this is in I this would make a contradiction, since 2Y 2 < I .

3. 2XY +2XZ +4X +2YZ +4Y +2Z2 +8Z +8:

same as above.
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4. 8+8X+2X2+8Y +6XY +X2Y +2Y 2+XY 2+8Z+6XZ+X2Z+6YZ+

2XYZ +X2Z +2Z2 +XZ2 +YZ2:

if this is in I this would imply that 2X2 + 2Y 2 + XY 2 + X2Z + 2Z2 +

XZ2 + YZ2 ∈ I which again isn’t in I. so YZ2 + XY 2 + XZ2 + X2Z ∈ I

Which is a contradiction since this can’t be factorized as a sum of elements

in {2,4X,4Y ,4Z,2XY ,2XZ,2YZ,XYZ}.

We also want to give an example where ω(IJ) < ω(I) +ω(J). This can be

shown with an example:

Example 3.14 Let I be an Idempotent prime ideal and let J = I . In this case,

ω(IJ) = ω(I2) = ω(I) < ω(I) +ω(J).

Proposition 3.15 ([9]) Let S be a semiring and I , J be ideals of S . Then the fol-

lowing statements hold:

1. Rad(I) ⊆ Rad(I) and Rad(I) = Rad(Rad(I)).

2. Rad(IJ) = Rad(I ∩ J) = Rad(I)∩Rad(J).

3. Rad(I) = S iff I = S .

4. Rad(I + J) = Rad(I) +Rad(J).

Lemma 3.16 Suppose I, J are two distinct maximal ideals in a semiring S , Then

In + Jm = S .

Proof. Given I, J ideals of S such that I+J = S thenRad(Jm+In) = Rad(Rad(Jm)+

Rad(In)) = Rad(I + J) = Rad(S) = S . But Rad(Jm + In) = S iff Jm + In = S .



22

Lemma 3.17 Let M be a maximal ideal in a semiring S . Then for any element

x <M , (Mn,x) = S .

Proof. Note that Rad(Mn + (x)) = Rad(Rad(Mn) + Rad(x)) = Rad(M) +

Rad((x)) =M+Rad((x)) and sinceM ⊂M+Rad((x))we conclude thatRad(Mn+

(x)) = S .

Lemma 3.18 Let M be a maximal ideal of a semiring S and n a positive integer.

ThenMn is an n-absorbing ideal of S . Moreover,ω(I) ≤ n andω(I) = n ifMn+1 ⊂

Mn.

proof. Let x1 · · ·xn+1 ∈Mn. If x1, · · · ,xn+1 ∈M then we are done. So suppose

at least one element, say, xn+1 <M . By the lemma abovewe have (Mn,xn+1) = S .

that is, m + sxn+1 = 1 where m ∈ M and s ∈ S . So x1 · · ·xn = (x1 · · ·xn)1 =

(x1 · · ·xn)(m + sxn+1) = (x1 . . .xn)m + (x1 · · ·xn+1) ∈ Mn. So Mn is n-absorbing.

The first part of the moreover statement is trivial. To show the second part is true

We want to show that Mn is not (n − 1)-absorbing. suppose that Mn+1 ⊂ Mn

and that Mn is (n − 1)-absorbing. Then it’s possible to choose x1, · · · ,xn ∈ M

such that x1 · · ·xn ∈ Mn\Mn+1. Mn is n-absorbing so that we have a product

of n − 1 of the xi ’s Mn. But this would imply that x1 · · ·xn ∈ Mn+1 which is a

contradiction to our previous assumption. So combining this with the fact that

Mn is n-absorbing we conclude that ω(Mn) = n.

Theorem 3.19 LetM1, · · ·Mn bemaximal ideals of a semiring S then I =M1 · · ·Mn

is an n-absorbing ideal of S . Moreover ω(I) ≤ n.

Proof. We can show the following holds. LetM1, · · · ,Mm be distinct maximal

ideals of a semiring S . Let n1 + · · ·+ nm = n. Then defining I =Mn1
1 · · ·M

nm
m we
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note thatMni
i isni absorbing (Previous lemma). so I =Mn1

1 · · ·M
nm
m =Mn1

1 · · ·M
nm
m .

and by theorem 1.18(c) It follows that I is n-absorbing.

The moreover statement is clear.

Lemma 3.20 Let P1, · · · , Pn be incomparable prime ideals in a semiring S . Let I be

an n-absorbing ideal contained in the intersection of these ideals. If xm1
1 · · ·x

mn
n ∈ I

where mi ’s are positive integers and xi ∈ Pi −
⋃
k,i

Pk then x1 · · ·xn ∈ I .

Proof: Since I is assumed to be n-absorbing we must have xk11 · · ·x
kn
n ∈ I With

k1 + · · ·+ kn = n. If any ki = 0, say k1 we have that x
k2
2 · · ·x

kn
n ∈ I ⊆ P1. And since

P1 was chosen prime, this implies xi ∈ P1, i , 1, a contradiction.

Lemma 3.21 Let I be an n-absorbing k-ideal with n ≥ 2. Suppose I has exactly n

minimal prime k-ideals over it, say P1, · · · , Pn. Let ci ∈ Pi −
⋃
j,i

Pj for 1 ≤ i ≤ n then

Pj
∏
i,j

ci ⊆ I .

Proof. First suppose aj ∈ Pj −
⋃
i,j

Pi , Then since Rad(I) is in the intersection

of all prime ideals over I and using Theorem 1 e and the previous lemma we

have aj
∏
i,j

ci ∈ I . Now suppose that a ∈ Pj ∩ (
⋃
i,j

Pi). Now let d ∈ (Pj −
⋃
i,j

Pi). We

wish to choose an element b such that a+bd ∈ (Pj −
⋃
i,j

Pi). Let F = {m|a ∈ Pi for

1 ≤ m ≤ n} and let D = {m|a < Pi for 1 ≤ m ≤ n, m , j}. If F = ∅ choose b =1.

Otherwise, let b =
∏
k∈F

ck . Now since bd ∈ Pm for all m ∈ F and a < Pm for every

m ∈ F, We conclude (bd + a) < Pm for every m ∈ F(Since Every Pm is a k-ideal).

And since a ∈ Pm for everym ∈D and bd < Pm for allm ∈D , We get (bd+a) < Pm
for allm ∈D(Since Pm is a k-deal). And since our choice of d,a ensures they are in

Pj we conclude that bd+a ∈ Pj −(
⋃
i,j

Pi). Let x = bd+a. As in the first part of this
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proof x
∏
i,j

ci ∈ I and d
∏
i,j

ci ∈ I . Now since (
∏
k∈F

ck)(d
∏
i,j

ci) + a
∏
i,j

ci = x
∏
i,j

ci ∈ I .

We can conclude, since I is a k-ideal, that a
∏
i,j

ci ∈ I .

Corollary 3.22 For n ≥ 2, Let P1, · · · , Pn be incomparable prime k-ideals of a

semiring S . Let a ∈ Pj for some 1 ≤ j ≤ n. Then there is an element d ∈ Pj −
⋃
i,j

Pi

and b ∈ S such that (bd + a) ∈ Pj −
⋃
i,j

Pi .

’

Theorem 3.23 Let I be an n-absorbing k-ideal of a semiring S such that I has n

minimal prime k-ideals, say P1, · · · , Pn. Then P1 · · ·Pn ⊆ I . Moreover ω(I) = n.

Proof. Choose ai ∈ Pi for 1 ≤ i ≤ n. Now for any choice of ci ∈ Pi\(P1∪
⋃
j,i

Pj)

we get ai
∏

2≤i≤n
ci ∈ I by the previous lemma. Now we want to use induction.

Suppose that for some k, 1 ≤ k ≤ n − 1 we have (a1 · · ·ak)
∏

k+1≤i≤n
ci ∈ I for

any choice of ci ∈ Pi\(P1 ∪
⋃
j,i

Pj) Where k + 1 ≤ i ≤ n. We will show that

(a1 · · ·ak+1)
∏

k+2≤i≤n
ci ∈ I for any choice of ci ∈ Pi\(P1∪

⋃
j,i

Pj). where k+2 ≤ i ≤ n.

By the previous corollary we may dk+1 ∈ Pk+1\ ∪j,k+1 Pj and bk+1 ∈ S such

that bk+1dk+1 + ak+1 ∈ Pk+1\ ∪j,k+1 Pj . Choose ck+1 = bk+1dk+1 + ak+1. By

the assumption above we have (a1 · · ·ak)
∏

k+1≤i≤n
ci = (a1 · · ·ak)ck+1

∏
k+2≤i≤n

ci =

(bk+1a1 · · ·akdk+1)
∏

k+2≤i≤n
ci + (a1 · · ·akak+1)

∏
k+2≤i≤n

ci) ∈ I .

Now bk(a1 · · ·ak)dk+1
∏

(k+2)≤i≤n ci ∈ I by assumption (by the choice of dk+1).

and since I is a k-ideal it follows that (a1 · · ·ak+1)
∏

(k+2)≤i≤n ci ∈ I . To prove the

statement of the theorem, set k = n−1 and cn = bndn+an then (a1 · · ·an−1(cn) ∈ I

again applying the same argument we get (a1 · · ·an) ∈ I . that is P1 · · ·Pn ⊆ I , Since

each ai was chosen arbitrarily from Pi .
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To showω(I) = n, choose xi ∈ Pi\
⋂

j,i Pj . Now xi · · ·xn ∈ I by above (P1 . . . Pn ⊆

I). Suppose a product of n− 1 of the xi ’s is in I, say, x2 · · ·xn ∈ I ⊆ P1, then this

would imply xi ∈ P1 where 2 ≤ n which contradicts the choice of xi ’s. So we

have ω(I) = n.

Corollary : Let I be an n-absorbing k-ideal of a semiring S such that I has

exactly n minimal prime ideals, say P1, · · ·Pn. If the Pi ’s are comaximal, then

I = P1 · · ·Pn.

Proof. This follows from the fact that P1 · · ·Pn ⊆ I ⊆ P1∩· · ·∩Pn from previous

theorem. And since P1, · · ·Pn are comaximal we have P1 ∩ · · · ∩ Pn = P1 · · ·Pn
(Remark 4.6). We now have P1 · · ·Pn ⊆ I ⊆ P1 · · ·Pn and thus I = P1 · · ·Pn.

Theorem 3.24 Suppose that P is a prime ideal of a semiring S . Let I be a P -

primary ideal of S such that P n ⊆ I for some natural number n. Then I is an

n-absorbing ideal of S . Moreover, ω(I) ≤ n In particular if P n is P -primary ideal

of S then it is n-absorbing with ω(P n) ≤ n. If P n+1 ⊂ P n then ω(P n) = n

Proof. Let x1 · · ·xn+1 ∈ I . If any of the xi ’s is not in P then, since I is P −

primary, we conclude that the product of the others is in I and we are done. If

all of the xi ’s are in P then by the assumption that P n ⊆ I we have x1 · · ·xn ∈ I

(any product of n of xi is in I). The proof of the moreover statement follows as

in lemma 4.12.

An example of a prime ideal P such that P 2 is 2-absorbing but P 2 is not

primary is given in [3]. We list it here but before we show a theorem from the

same paper without it’s proof:

Theorem 3.25 Suppose that I is an ideal of R such that I , Rad(I) and Rad(I)

is a prime ideal of R. Then the following statements are equivalent:
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1. I is a 2-absorbing ideal of R.

2. Bx = {x ∈ R : yx ∈ I} is a prime ideal of R for each x ∈ Rad(I)\I .

Example 3.26 LetR =Z+3XZ[X]. and let P = 3XZ[X]. Then P 2 = 9X2
Z[X].

Note that 3(3x2) ∈ P 2. and since 3 < P 2 and 3x2 < P 2 and neither is (3x2)n or 3n

for any n ≥ 1, we can say that P 2 is not a primary ideal.

Theorem 3.27 Let P be a divided prime ideal of a semiring S . And let I be an

n-absorbing ideal of S such that Rad(I) = P . Then I is P -primary.

Proof. To show this is primary Let xy ∈ I with x,y ∈ S and y < P . Now

P ⊂ yn−1S since P is a divided ideal in S and yn−1 < P we have that x = yn−1z.

Note that zyn = xy ∈ I . And since I is n-absorbing and yn < I (Otherwise y ∈ P

by definition of the radical). We conclude that xyn−1 ∈ I . Hence I is a P -primary

ideal of S .

For an ideal I of a semiring S define Ix = {y ∈ S | xy ∈ I} = (I :x S). This is

usually called an ideal quotient.

Theorem 3.28 Let I be an n-absorbing ideal of a semiring S . Then Iy = (I :S y)

is also an n-absorbing ideal of the semiring S for all y < I .

Proof : Suppose that I is an n-absorbing ideal S . and let x1 · · ·xn+1 ∈ Iy for

x1, · · · ,xn+1. Then, yx1 · · ·xn+1 = (yx1)x2 · · ·xn+1 ∈ I . If x2 · · ·xn + 1 we are done.

So assume not. We must have y times n− 1 of the x′is , 2 ≤ i ≤ n. say, without loss

of generality, yx1 · · ·xn−1. and so by definition of Ix, x1 · · · · · ·xn−1 ∈ Ix as desired.

So Ix is an n-absorbing ideal of S . The moreover statement is clear.
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Theorem 3.29 Let n ≥ 2 and I ⊂ Rad(S) be an n-absorbing k-ideal of a semiring

S . Suppose that x ∈ Rad(I)\I , and let m ≥ 2 be the least positive integer such that

xm ∈ I . Then Ixm−1 = (I :S xm−1) is an n−m+1 absorbing ideal of S containing I .

Proof. Suppose that x1 · · ·xn−m+2 ∈ Ixm−1 for x1, · · · ,xn−m+2 ∈ S . By defi-

nition of Ixm−1 we have xm−1x1 · · ·xn−m+1 ∈ I . Since I is n-absorbing, either

xm−2x1 · · ·xn−m+1 ∈ I or xm−2multiplied by a combination of n−m+2 elements of

the xi ’s. If the later holds then we are done. So assume that xm−2x1 · · ·xn−m+1 ∈ I .

Sincewe assumed xm ∈ I . We nowhave x(xm−2x1 · · ·xn−m+2) ∈ I and xm(x1 · · ·xn−m+2) ∈

I and sowe have the xxm−2x1 · · ·xn−m+1(xn−m+2+x) ∈ I . again, using the fact that

I is n-absorbing and the fact that a product of xm−1 and n-m+1 of the elements

is not in I, we have xm−2x1 · · ·xn−m+1(xn−m+2 + x) ∈ I . Since I is a k-ideal and

xm−2x1 · · ·xn−m+2 ∈ I we conclude xm−1x1 · · ·xn−m+1 which is a contradiction as

we assumed no product of n−m+1 of the xi ’s.

Corollary 3.30 If I is an n-absorbing ideal of a semiring S . Let x ∈ Rad(I)\I and

suppose that n is the least element such that xn ∈ I then Ixn = (I :S xn−1) is a prime

ideal in I .

Proof. By the above theorem we know that Ixn is (n− n+ 1)-absorbing i.e it

is 1-absorbing and thus a prime ideal containing Rad(I).

Corollary 3.31 Let n ≥ 2 and I be an n-absorbing P -primary ideal of a semiring

S for some prime ideal P of S . If x ∈ Rad(I)\I and n is the least positive integer

such that xn ∈ I , then Ixn−1 = (I :S xn−1) = P .

proof. By the previous corollary, we have P = Rad(I) ⊆ Ixn−1 . To show that

Ixn−1 ⊆ P choose y ∈ Ixn−1 . so yxn−1 ∈ I . since xn−1 < I then, since I is P -primary,

y ∈ P . So this concludes Ixn−1 ∈ P .
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Theorem 3.32 Let n ≥ 2 and I ⊂ Rad(I) be be an n-absorbing ideal of a semiring

S such that I has exactly n minimal prime ideals, say P1, . . . , Pn Suppose that x ∈

Rad(I)\I . And let m ≥ 2 be the least positive integer such that xm ∈ I Then every

product of n−m+1 of the ideals P1, · · · , Pn is contained in Ixm−1 = (I :S xm−1).

Proof. First we show that m ≤ n. Suppose not, let m > n be the least positive

integer satisfying xm ∈ I . then since I is n-absorbing we must conclude that

xn ∈ I which contradicts the minimality of m. So we must have n −m + 1 ≥ 1.

Let F = {Q1, · · · ,Qm−1} ⊂ G = {P1, · · · , Pn} and letD = G\F. This way D contains

exactly n−m+1 copies of the P ′i s. If x ∈ Rad(I)\I then x ∈Q for allQ ∈ F. This

holds since the radical is the intersection of prime ideals over I . From this we

have xm−1 ∈
m−1∏
i=1

Qi . By previous theorem, we have
∏

Qi∈F
Qi

∏
Pi∈G

Pi = P1 · · ·Pn ⊆ I .

So xm−1
∏
Pi∈F

Pi ⊆ I . So we conclude
∏
Pi∈F

Pi ⊆ Ixm−1 as desired.

Theorem 3.33 Let n ≥ 2 and I ⊂ Rad(I) be be an n-absorbing ideal of a semiring

S such that I has exactly n minimal prime ideals, say P1, . . . , Pn Suppose that x ∈

Rad(I)\I . Then every product of n− 1 of the ideals P1, · · · , Pn is contained in Ix =

(I :S x).

Proof. From the above theorem, we either have x2 ∈ I with 2 being the least

positive number m such that xm ∈ I , in which case we have that every product

of n−2+1 = n−1 of the ideals P1, · · · , Pn is contained in Ix = (I :S x). Otherwise,

we can do a similar proof of the above theorem.

In this section we explore which of the results in Badawi concerning the ring

theoretic constructions. And the first wemight ask is whether the preimage of an

ideal of a semiring is also an ideal. To state the question with more formality: Let

f : S→ T be a semiring homomorphism and let J be an ideal of T . Is f −1(J) an
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ideal. The answer is yes. To show so suppose that x,y ∈ f −1(J). Then f (x), f (y) ∈

J and so f (x) + f (y) = f (x + y) ∈ J and thus x + y ∈ f −1(J). Based on this we

have the following result:

Theorem 3.34 Let S and T be semirings and let J be an n-absorbing ideal of T.

Let f : S → T be a semiring homomorphism then I = f −1(J) is an n-absorbing

ideal of S . Moreover, ωR(f −1(J)) ≤ωT (J).

Proof. Let x1 · · ·xn+1 ∈ I where x1, · · · ,xn+1 ∈ S . then f (x1 · · ·xn+1) ∈ J . And so

f (x1) · · ·f (xn+1) ∈ J . And since J is n-absorbing we conclude the product of n

of them, say without loss of generality f (x1) · · ·f (xn) ∈ J and so f (x1 · · ·xn) ∈ J

thus x1 · · ·xn ∈ f −1(J).

The moreover statement is clear.

Theorem 3.35 Let S1 and S2 be semirings. And let I1 be an n-absorbing ideal of

S1 and I2 be an m-absorbing ideal of S2. Then I1 × I2 is an m+ n absorbing ideal

of S1 × S2. Moreover, ωS1×S2(I1 × I2) = ωS1(I1) +ωS2(I2).

Proof. Suppose that z1 · · ·zm+n+1 ∈ I1 × I2 and note that each zi = (xi , yi)

where xi ∈ I1 and yi ∈ I2. Now z1 · · ·zn+m+1 = (x1 · · ·xn+m+1, y1 · · ·ym+n+1 ∈ I1 ×

I2). Hence x1 · · ·xn+m+1 ∈ I1 and y1 · · ·yn+m+1 ∈ I2. but since I1 and I2 are n-

absorbing and m-absorbing respectively. We conclude that n of the x′is have

their product in I1 (say xi1 · · ·xin) and m of the yi ’s have their product in I2 (say

yk1 · · ·ykm). Now assuming K = {i1, · · · .in} ∪ {k1 · · ·km}

then
∏

k∈K (xk , yk) ∈ I1 × I2 (the proof is valid even though K might have less

than n+m elements by theorem 1).

We now show the moreover statement is correct:
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Corollary 3.36 Let S1, · · · ,Sn be semirings and let Ik be an ideal of Sk for 1 ≤ k ≤

n. Then If Ik is mk-absorbing then I1 × · · · × In is (m1 + · · ·+mn)-absorbing.

Proof. Suppose that this holds for n = l. we show it holds for n = l + 1. If

S1, · · ·Sl+1 are semirings with corresponding Ideals I1, · · · , Il+1. Note that I1 ×

· · · × Il is an (n1 + · · ·+ nl)-absorbing ideal of S1 × · · · × Sl by assumption and by

previous theorem we have (I1× · · · × Il)× Il+1 to be an (n1+ · · ·+nl+1)-absorbing

ideal of the semiring S1 × · · · × Sl+1.
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4 Conclusion

In this thesis we recalled some of the algebraic structures in semiring theory and

gave some examples related to it. We studied the concept of n-absorbing ideals

in commutative semirings and illustrated it with many examples and introduced

some propositions. As well as generalizing some of the results that don’t hold

for normal ideals to subtractive ideals. Most of the work presented in this thesis

is a generalization to the work done by Badawi and Anderson.

5 Future Work

In the future, we wish to study the results to some specific types of semirings as

well as prufer domains. It is possible to also consider to generalize some results

that require some workarounds.
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